

0.8A DC to DC CONVERTER Control Circuit

CL34063

General Description

The CL34063 series is a monolithic control circuit containing the primary functions required for DC to DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This IC was specifically designed to be incorporated in Step–Down and Step–Up and Voltage–Inverting applications with a minimum number of external components.

The CL34063 is available in 2 packages: DIP-8 and SOP-8.

Features

- Output switch current to 0.8A
- Reference precision 2%
- Low quiescent current: 2.5mA (TYP.)
- Operating from 3V to 18V
- Frequency operation to 100 kHz
- Active current limiting

Applications

- Battery Charger
- ADSL Modems
- NICs/Switches/Hubs
- Negative Voltage Power Supplies

0.8A DC to DC CONVERTER Control Circuit

CL34063

Function Block

0.8A DC to DC CONVERTER Control Circuit

CL34063

Pin Configuration

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
DIP-8	-40℃~ +85 ℃	CL34063P-E1	CL34063	Tube
SOP-8	-40℃~ +85 ℃	CL34063M-E1	CL34063	Tube
	-40℃~ +85℃	CL34063MTR-E1	CL34063	Tape & Reel

ShangHai Chipland Micro-electronics technology co., Itd

0.8A DC to DC CONVERTER Control Circuit

CL34063

Absolute Maximum Ratings (Note1)

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	20	V
Comparator Input Voltage Range	VIR	-0.3 to +20	V
Switch Collector Voltage	VC(switch)	20	V
Switch Emitter Voltage (VPin1 = 18 V)	VE(switch)	20	V
Switch Collector to Emitter Voltage	VCE(switch)	20	V
Driver Collector Voltage	VC(driver)	20	V
Driver Collector Current (Note2)	IC(driver)	100	mA
Switch Current	ISW	0.8	А
Power Dissipation and Thermal Characteristics DIP-8		4050	
TA = 25°C Thermal Resistance SOP-8	PD R0JA	1250 100	°C/W
TA = 25°C Thermal Resistance	PD RθJA	625 160	mW °C/W
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	-40~ +85	°C
Storage Temperature Range	TSTG	-65~ +150	°C

Note1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note2: Maximum package power dissipation limits must be observed.

Recommended Operating Conditions

Parameter	Symbol	Min	Мах	Unit	
Supply Voltage	VCC	3	18	V	
Ambient Operating Temperature	TA	-40	+85	°C	

0.8A DC to DC CONVERTER Control Circuit

CL34063

Electrical Characteristics

Vcc = 5V, GND = 0V, TA = -40 $^\circ \!\! \mathbb{C}$ to +85 $^\circ \!\! \mathbb{C}$ unless otherwise specified.

Parameter	Symbol	Condition	Min	Туре	Max	Unit	
Oscillator							
Frequency	fosc	Vpin5=0V,Ta=25℃ CT=1.0nF	20	33	42	kHz	
Charge Current	lchg	Vcc=5V to 18V,Ta=25℃	20	30	42	uA	
Discharge Current	Idischg	Vcc=5V to 18V,Ta=25℃	120	180	260	uA	
Discharge to charge current ratio	ldischg/lchg	Pin7 to Vcc,Ta=25℃	5.0	6.2	7.5		
Current limit sense	Vipk(sense)	ldischg=lchg, Ta=25℃	250	300	350	mV	
Output Switch (Note1)							
Saturation Voltage, Darlington Connection	VCE(sat)	Isw=0.6A Pin1, 8 connected		1.0	1.5	V	
Saturation Voltage (Note2)	VCE(sat)	Isw=0.6A Rpin8=82 Ω to VCC, Forced $\beta \approx 20$		0.5	0.95	V	
DC Current Gain	hFE	Isw=0.6 A, VCE=5 V	50	75			
Collector Off-State Current	Ic(off)	VCE =18V		0.01	100	uA	
Comparator	Comparator						
Threshold Voltage	Vth	Ta=25℃ Ta=-40℃ to +85℃	1.225 1.21	1.25	1.275 1.29	V	
Threshold Voltage Line Regulation	Reg(line)	Vcc=3 to 18V		1.5	5	mV	
Input Bias Current	lib	Vin= 0V		-20	-400	nA	
Total Device	·						
Supply Current	lcc	Vcc=5 to 18V,CT=1nF Pin7=Vcc, Vpin5>Vth Pin2=GND Other pins open		2.5	4.5	mA	

Note1: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Note2: If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (\leq 300 mA) and high driver currents (\geq 30 mA), it may take up to 2.0 us for it to come out of saturation. This condition will shorten the off time at frequencies \geq 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch can't saturate. If a non–Darlington configuration is used, the following output drive condition is recommended: Forced of output switch: IC output / (IC driver – 7.0 mA*) \geq 10

* The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

0.8A DC to DC CONVERTER Control Circuit

CL34063

Typical Performance Characteristics

Figure 1. Output Switch On-Off Time vs. Oscillator Timing Capacitor

Figure 3. Oscillator Frequency vs. Timing Capacitor

Figure 4. Standby Supply Current vs. Supply Voltage

0.8A DC to DC CONVERTER Control Circuit

CL34063

Typical Performance Characteristics (Continued)

1.2 1.1

Figure 7. Current Limit Sense Voltage vs. Temperature

0.8A DC to DC CONVERTER Control Circuit

CL34063

Typical Application

Figure 8. Step-Up Converter (Note 1)

Note 1: This is a typical step-up converter configuration. In the steady state, if the resistor divider voltage at pin 5 is greater than the voltage in the non-inverting input, which is 1.25V determined by the internal reference, the output of the comparator will go low. At the next swithching period, the output switch will not conduct and the output voltage will eventually drop below its nominal voltage until the divider voltage at pin 5 is lower than 1.25V. Then the output of the comparator will go high, the output switch will be allowed to conduct. Since $V_{PIN5}=V_{OUT}$ * R2/(R1+R2)=1.25(V), the output voltage can be decided by $V_{OUT}=1.25$ * (R1+R2)/R2 (V).

0.8A DC to DC CONVERTER Control Circuit

CL34063

Typical Application (Continued)

Figure 9. Step-Down converter (Note 2)

Note 2: This is a typical step-down converter configuration. The working process in the steady state is similar to step-up converter, $V_{PIN5}=V_{OUT}*R2/(R1+R2)=1.25$ (V), the output voltage can be decided by $V_{OUT}=1.25*$ (R1+R2)/R2 (V).

0.8A DC to DC CONVERTER Control Circuit

CL34063

Typical Application (Continued)

Figure 10. Voltage Inverting Converter (Note 3)

Note 3: This is a typical inverting converter configuration. The working process in the steady state is similar to step-up converter, the difference in this situation is that the voltage at the non-inverting pin of the comparator is equal to $1.25V+V_{OUT}$, then $V_{PIN5}=V_{OUT}*R2/(R1+R2)=1.25V+V_{OUT}$, so the output voltage can be decided by $V_{OUT}=-1.25*(R1+R2)/R1$ (V).

0.8A DC to DC CONVERTER Control Circuit

CL34063

Mechanical Dimensions

DIP-8

Unit: mm(inch)

Unit: mm(inch)

0.8A DC to DC CONVERTER Control Circuit

CL34063

Mechanical Dimensions (Continued)

SOP-8

ShangHai Chipland Micro-electronics technology co., Itd

0.8A DC to DC CONVERTER Control Circuit

CL34063

IMPORTANT NOTICE

ShangHai Chipland Micro-electronics technology Limited reserves the right to make changes without further notice to any products or specifications herein. ShangHai Chipland Micro-electronics technology Limited does not assume any responsibility for use of any its products for any particular purpose, nor does ShangHai Chipland Micro-electronics technology Limited assume any liability arising out of the application or use of any its products or circuits. ShangHai Chipland Micro-electronics technology Limited does not convey any license under its patent rights or other rights nor the rights of others.